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Abstract. The problem of a vortex electromagnetic mass in a superconductor is considered accounting for
the self-interaction effect conditioned by the coupling of the moving vortex to the excited fluctuations of
the superfluid density. The obtained polaron-type mass exceeds the earlier obtained electromagnetic mass
in view of the large value of the light speed relation to the Fermi velocity and can dominate over the vortex
core mass.

PACS. 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.) – 74.25.Qt Vortex lattices,
flux pinning, flux creep

Motion of Abrikosov vortices has a crucial impact on ba-
sic characteristics of superconductors, therefore the differ-
ent regimes of vortex lattice dynamics has been studied
for conventional and high-temperature superconductors.
In the underdamped regime, when the equation of motion
for the vortex cannot be reduced to the balance condition
for external and damping forces, an important dynami-
cal property is the inertial mass of the moving vortex.
The discussion of effects arising due to the vortex mass
can be found e.g. in references [1,2]. The inertial mass
is an effective parameter that characterizes the increase
of the internal energy of the superfluid when the vortex
moves with a velocity v, owing to origination of the ki-
netic energy Fkin = Mv2/2. Various sources of a vor-
tex kinetic energy in superconductors were proposed, such
as the energy of the induced electromagnetic fields [2–6],
the core energy [2,3,5–9], the energy of the hydrody-
namic backflow [10], and the crystal lattice deformation
energy [11–13].

Generation of the electromagnetic mass is the result
of the polarization of the charged superfluid around the
vortex core. In the region far from the core the modulus
of the superconducting order parameter is roughly con-
stant and the vortex motion causes only fluctuations of
the order parameter phase, which implies excitation of
the density fluctuations and the local polarization of the
superfluid. In neutral compressible superfluids the density
oscillations stimulated by a vortex motion create a signifi-
cant “compressibility mass” [10,14,15], exceeding the core
contribution. Meanwhile, in the charged liquids the den-
sity fluctuations are accompanied by the creation of elec-
tric fields which are strongly screened due to the Coulomb
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interaction. This screening reduces the energy of the den-
sity fluctuations. The electromagnetic mass of a vortex
was first studied by Suhl [3] at the temperature T = 0
under the assumption of the perfect charge screening. In
this work the induced electric field has been determined
from the local charge neutrality condition, and the electric
field energy was designated as the vortex kinetic energy.
More accurate estimate of the electromagnetic mass at
zero temperature has been made by Duan and Leggett [5]
and Duan [6] with account of compressibility of the super-
fluid. In these works the local charge density and the elec-
tric field were computed by the self-consistent way using
Maxwell’s equations, while the vortex inertia was condi-
tioned both by the electric field and the charge density os-
cillation energies. Nevertheless, the electromagnetic mass
obtained by Suhl [3] coincides with the results of the pa-
pers [5,6] due to the fact that the charge screening length
in superconductors is much smaller than the correlation
length ξ. The electromagnetic mass found in the above-
mentioned works is exceeded by the vortex core mass ow-
ing to the smallness of the Fermi velocity vF with respect
to the light speed c: Mel/Mcore ∝ (λL/ξ)

2 (vF /c)
2, where

λL is the London penetration length.

Although in the papers [5,6] the charged superfluid
compressibility was taken into account which permitted
the correct description of the excited density oscillations,
the role of vortex interaction with these excitations must
be clarified for the proper determination of the vortex
electromagnetic mass. A model of the vortex coupling to
the low lying excitations of a neutral superfluid was pro-
posed by Niu, Ao and Thouless [16]. We show in this pa-
per that in superconductors the interaction of a vortex
with dynamical polarization of the background permits an



434 The European Physical Journal B

obvious description in the framework of the classical elec-
trodynamics. This interaction generates a large electro-
magnetic mass, that can exceed the vortex core mass. The
problem is discussed for the temperature region near ab-
solute zero, when the concentration of normal electrons
and the dissipation outside the vortex core vanish.

A vortex in a superfluid is the topological object that
can be described by the phase χ of the order parameter
ψ = ∆ exp

(∫
L ∇χdl). If L is a closed contour encircling

the point r = 0 in the (x, y) plane, which is the coordinate
of the singularity line directed along the z - axis of the co-
ordinate system, then the single-valuedness of the order
parameter is expressed by the equation

∮ ∇χdl = 2π, al-
lowing one to identify the phase around the static vortex
with the azimuthal angle θ = arctg (y/x). In the case when
the vortex moves uniformly with a small velocity v (when
the adiabatic approximation for the phase is valid [15]),
the phase is determined as χ (r, t) = θ (r − vt). The space
and time derivatives of this phase

∇χ = êϕ
1
r
, χ̇ = −v∇χ (1)

are the sources of the fields and currents around the mov-
ing vortex.

Induction of magnetic and electric fields by a singu-
larity in superconductors results directly from the gauge
invariance: the phase derivatives (1) enter into the energy
functional in the proper combinations with the vector po-
tential A and the scalar potential ϕ. In the region far from
the core, where the order parameter modulus is constant,
the energy functional[3] can be written as follows:

F = F0 +
∫
dr

{

γ0

(
χ̇+

2e
�
ϕ

)2

+ γ

(
∇χ− 2e

�c
A

)2

+
B2 + E2

8π

}
. (2)

Here F0 is the energy of the homogeneous superconduc-
tor, i.e. the computing origin of the vortex energy; B
and E are the induced magnetic and electric fields re-
spectively. The integration goes over the two-dimensional
radius-vector r, as the vortex unit length mass should be
estimated. The functional (2) describes only the phase
fluctuations, therefore the parameters γ0 and γ are de-
pendent on the order parameter amplitude and determine
the charge density and the current. The coefficient γ0 can
be expressed through the charge screening distance λscr,
and γ - through the London penetration length λL:

γ0 =
1

8πc2

(
φ0

2πλscr

)2

, γ =
1
8π

(
φ0

2πλL

)2

, (3a)

where φ0 = π�c/e is the flux quantum. The ratio of these
parameters gives the square of the characteristic velocity

s2 = γ/γ0. (3b)

In the energy functional used by Suhl [3] and in the further
works [2,5,6] this velocity was assumed to be equal s =

vF /
√

3, then λscr represents the Fermi-Thomas screening
length. Here, analyzing the problem in the framework of
the phenomenological theory, we will not involve as yet
the microscopic values of the parameters γ0 and γ, pre-
ferring to use the phenomenological parameters s and λL

determined by the equations (3a) and (3b).
The external magnetic field that has penetrated into

the superconductor and created the topological defect can
be described by a vector potential defined as Aext =
− (φ0/2π)∇χ. The induced magnetic field and the vor-
tex currents which screen the external field are described
by the potential A ≡ Aind, so that the magnetic field B in
(2) is B = ∇×Aind. In a similar manner, we can define the
external electric field ϕext = (φ0/2πc) χ̇ which is screened
by the induced charge density and creates the scalar po-
tential ϕind. As the slow motion of the vortex keeps the
phase gradient (1) purely transverse, the induced vector-
potential Aind also have no longitudinal component (due
to the gauge coupling of the order parameter to the elec-
tromagnetic field) and its time derivative determines the
transverse field −∂tAind/c. The electric field in (2) repre-
sents the sum of the transverse and longitudinal compo-
nents: E = −∂tAind/c−∇ϕind.

Let us now analyze in detail the origination of the lon-
gitudinal electric field around the moving vortex. The to-
tal electric field represents the sum of the induced scalar
potential gradient and of the electric field generated by
the moving magnetic field B:

Etotal = −∇ϕind − 1
c

[v × B] .

This expression can be obtained from the hydrodynamic
equation for the charged superfluid flow in the presence
of a magnetic field [10]. Essentially, the second term in
the right-hand side of this expression contains the longi-
tudinal component [v × B]l /c. This component can be re-
vealed using B = ∇×Aind and the vector transformation
[v × B] = − (v∇)Aind + ∇

(
vAind

)
. Here the first term

is equal to ∂tAind and is responsible for the transverse
electric field induction, while the second term creates a
longitudinal field along with the scalar potential gradient.
Thus the total electric field is equal to

Etotal = −1
c

∂Aind

∂t
−∇

(
ϕind +

1
c
vAind

)
.

The obtained longitudinal electric field is due to the trans-
formation of the scalar potential in the laboratory frame
(connected with the superconductor) which is the refer-
ence frame for the magnetic field motion:

ϕ = ϕind +
1
c
vAind (4)

The scalar potential (4) is just the one that must com-
pose the gauge-invariant combination with the phase time-
derivative that enters into the functional (2). Usually in
this functional the scalar potential is assumed to be equal
to ϕind, omitting the second component in (4). Mean-
while, the account of this component of the scalar po-
tential allows one to obtain the longitudinal current and
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the complete charge density in the Maxwell’s equations,
which must be derived by minimizing the functional (2)
with respect to Aind and ϕind:

∇× B =
4π
c

(
jl + jt

)
+

1
c

∂E
∂t

(5a)

∇E = 4πρ (5b)

where the transverse supercurrent jt and the charge den-
sity ρ with account of (3a) and (3b) can be written as

jt = − c

4π
λ−2

L

(
Aind − φ0

2π
∇χ

)
(6a)

ρ = −c
2λ−2

L

4πs2

(
ϕind +

1
c
vAind +

φ0

2πc
χ̇

)
(6b)

and the longitudinal current jl = vρ satisfies the continu-
ity equation ∇j+ ∂tρ = 0. Using the equations (6a), (6b),
and introducing the gauge-invariant potentials

Q = Aind − φ0

2π
∇χ, Φ = ϕind +

1
c
vAind +

φ0

2πc
χ̇

we can transform the functional (2):

F −F0 =
∫
dr

(
− 1

2c
jtQ +

B2

8π

)
+

∫
dr

(
−1

2
ρΦ+

E2

8π

)
.

(7)
Here the first term in the right-hand side is the static
vortex energy. The second term describes the kinetic en-
ergy due to the superfluid polarization. The kinetic energy
must be completed with account of the energy of the lon-
gitudinal field [v × B]l /c. Besides, our aim is to include
the effect of the vortex coupling to the superfluid polar-
ization. Recalling that the total energy of a medium influ-
enced by external fields contains the interaction energies
of these fields with the magnetization M and the polar-
ization P of the medium, we introduce now the vectors M
and P for the charged superfluid surrounding the mov-
ing vortex, which are defined by the magnetization cur-
rent jm = − (c/4π)λ−2

L Aind and the polarization charge

ρp = − (
c2λ−2

L /4πs2
) (
ϕind + vAind/c

)
by means of the

equations jm = c [∇× M] and ρp = −∇P. As the vortex
is considered as the source of the external fields Aext and
ϕext, the coupling of the vortex to the excitations of the
superfluid can be clearly determined now: the interaction
energy of the magnetized and polarized medium with the
external fields is given by the expressions [17]

Fm =
1
2

∫
MH̃dr (8)

Fp =
1
2

∫
PẼdr. (9)

Here H̃ and Ẽ are the fields which will remain in the super-
conductor if the magnetization and polarization vanishes,
i.e. H̃ = ∇× Aext, and Ẽ = −∇ϕext is the longitudinal
component of the “external” electric field.

The interaction energies (8) and (9) must be added
to the expression (7) to obtain the total energy of the
superconductor. For the computation of the vortex en-
ergy the difference between origins of the energies Fm and
Fp should be noticed. The field H̃ = − (φ0/2π) curl∇χ
arises from the external field that penetrates as the vor-
tex line into the superconductor and creates the current
jext. This field averaging over an array of vortices with
the coordinates rn with account of the relation curl∇χ =
êz · 2πδ (r − rn) results in

〈
H̃

〉
= êz · nφ0, i.e. gives the

externally penetrated flux density. So, the term Fm is con-
nected with the external field energy and does not enter
into the vortex static energy (given by the first integral in
the equation (7)), which can be transformed making use
of equation (5a) as

Fst =
1
2c

∫
jextQdr. (10)

On the contrary, electric fields are not imposed to the su-
perconductor externally, and the field ϕext is generated
by the vortex motion, just as ϕind. Therefore, the energy
Fp (9) is the measure of the vortex inertia along with the
second term in (7), and the complete kinetic energy is the
sum of these two terms. This sum can be transformed to
a more cogitable form by means of the electric field induc-
tion D = E + 4πP, which allows rewriting the equation
(5b) as ∇D = 4πρext, where the external charge density
is ρext = − (

c2λ−2
L /4πs2

)
ϕext. According to the theory of

a flowing conducting medium in a magnetic field [17], the
longitudinal component of the induction vector is equal to

Dl = εEl +
ε− 1
c

[v × B]l , (11)

where ε is the longitudinal dielectric response function of
the condensate. After some manipulations the complete
electromagnetic kinetic energy is converted to the follow-
ing form

Fkin =
∫
dr

(
DlEl

8π
− 1

2
ρextΦ

)
. (12)

The last expression does not include the energy of the
induced transverse field which is negligible due to the large
value of c.

The computation of the static and kinetic energies is
straightforward with the use of Fourier transformations,
such as ∇χ =

∫
dkeikr (∇χ)k, so that (∇χ)k = êϕ · i/2πk

and χ̇k = −v (∇χ)k. To obtain the induced potentials
from the Maxwell’s equations (5a, 5b), it is convenient to
introduce the dielectric response function

εk = 1 +
c2λ−2

L

s2k2
. (13)

This function, that describes the condensate response to
a longitudinal perturbation [18], possesses here only the
space (but not the time) dispersion, due to the vortex
slow motion v � s resulting in creation of the “quasi-
static” longitudinal electric field. The dielectric function
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(13) allows one to write out the electric induction D in
the form (8). Neglecting the displacement current in the
equation (5a), we obtain two terms in the kinetic energy
(12):

Dl
kE

l
k

8π
=

1
8πs2

(
φ0

2π

)2
εk − 1
εk

χ̇2
k

k−2 + λ2
L

−1
2
ρext

k Φk =
1

8πs2

(
φ0

2π

)2 1
εk

χ̇2
k

k−2 + λ2
L

.

Here the second term gives the kinetic energy that has
been calculated in the works [2–6]. The smallness of this
energy is due to the large εk values in the wave vector
range k < ξ−1 where the used model is valid. The first
term that results actually from the energy (9), at these
wave vectors turns out to be larger than the second one
provided that c2λ−2/s2k2 � 1. Notably, the sum of these
two terms yields the exact expression for the kinetic en-
ergy

Fkin =
1

8πs2

(
φ0

2π

)2 ∫
dk

χ̇2
k

k−2 + λ2
L

=
Fstv

2

2s2
(14)

where the static energy is obtained from (10):

Fst =
(

φ0

4πλL

)2

ln
λL

ξ
(15)

and the vortex mass is

M =
(

φ0

4πλL

)2 1
s2

ln
λL

ξ
. (16)

This mass is generated by the vortex interaction with the
condensate polarization (which is caused itself by the vor-
tex motion), and can be regarded as a polaron-like mass.
In the neutral systems the coupling of a vortex to the
superfluid excitations gives rise to the vortex localiza-
tion [16,19]. In superconductors the vortex self-interaction
results in the effective mass increase, which is the feature
of the polaron effect. A probable manifestation of the self-
interaction can be also an attraction between fluctuating
vortices, arising along with Van der Waals forces [20,21].

The vortex mass (16) is parameterized in fact by the
parameter λscr that agrees with the original result of
Suhl [3] (the equation preceding Eq. (3) of his paper).
Suhl had derived the electromagnetic mass from the elec-
tric field energy

∫ (
E2/8π

)
dr and obtained the result

µem =
1
2

(
φ0

4πλL

)2 1
c2

(
λL

λscr

)2

,

which coincides with logarithmic accuracy and with ac-
count of the numerical factor 1/2 with our mass (16),
since λscr = (s/c)λL. Then he argued that the inequal-
ity λscr << ξ already holds in superconductors and the
charge screening length must be substituted by the coher-
ence length:

µem =
1
2

(
φ0

4πξ

)2 1
c2
.

This result can be obtained from the second term on
the right-hand side of equation (7), which indicates that
the energy of the electric field coupled to the superfluid
decreases due to non-complete charge density screening
[4–6]. A rough order-of-magnitude estimate results in a
conclusion, that such reduction of the kinetic energy is
compensated by the account of the self-interaction en-
ergy (9). However, the basic distinction of our result
from Suhl’s original result should be noted. The equa-
tion (16) is in complete agreement with an important ob-
servation made in the works [4–6,8,12]: the contributions
to the mass from various processes can be represented as
Mi = Fi/s

2
i , where Fi is the corresponding static energy

and si is the characteristic velocity. In contrast to the pre-
vious works, our analysis resulted precisely in the vortex
massM = Fst/s

2, where the static energy (15) is provided
by the magnetic field and currents existing outside the vor-
tex core and is described by the lower critical field Hc1:
Fst = (φ0/4π)Hc1 [23]. As to the characteristic velocity,
the mass (16) is determined by the velocity of the longitu-
dinal electric field coupled to the condensate s, but not by
the light speed c, that leads to the negligible mass. If we
assume, as in [3], that this is the same speed s = vF /

√
3

that determines the core mass µcore = 3ξ2H2
c /4v2

F (where
Hc is the thermodynamic field), then the mass (16) ex-
ceeds the core mass due to the factor 2 ln (λL/ξ) which
can be quite large. The similar result has been obtained
for the compressibility mass in the neutral superfluids [10,
14,15]. However, for the numerical estimate of the vortex
mass some consideration of the velocity s is relevant here.

The energy functional (2) must describe oscillations of
the order parameter phase, and in neutral Fermi super-
fluids these collective oscillations represent the Anderson-
Bogolubov sound-like modes propagating with the veloc-
ity vF /

√
3. For neutral Bose superfluids the sound velocity

can be much smaller (s ∼ �/mξ) that results in the large
compressibility mass [10]. In superconductors the collec-
tive modes with the acoustic dispersion law are known to
exist only at temperatures near the phase transition point.
These are the Carlson - Goldman modes caused by the
counterflow of normal and superfluid components of the
charged superfluid (see Ref.[22] for a review). At zero tem-
perature the Coulomb interaction prevents the propaga-
tion of acoustic modes in a charged superfluid; however, an
“external” impact produced by the vortex motion causes
compression of the superfluid. Therefore, the velocity s in
this case should be considered as a parameter describing
the electronic polarizability of the superconductor and de-
termining the charge density according to equation (6b).
The microscopic theory of longitudinal response of super-
conductors [22] allows determination of the required pa-
rameters at arbitrary temperatures. Particularly, in the
dirty limit l < ξ, where l is the mean free path of electrons,
at temperatures near Tc the Carlson-Goldman modes ve-
locity sCG =

√
2/3πvF lξ

−1 had been obtained, while at
T = 0 one can find s = vF lξ

−1/
√

3, and the velocity s

can be appreciably smaller than vF /
√

3. Already at the
impurity concentration corresponding to lξ−1 ∼ 0.5 and
for Ginzburg-Landau parameter λL/ξ ∼ 10 the mass (16)
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value exceeds more that ten times the core mass estimated
in [3] (in this case the mass (16) for conventional low tem-
perature superconductors is M ∼ 105me/cm).

The experimental estimate of the vortex mass may be
obtained by the study of microwave response of supercon-
ductors in the mixed state [25,26], determining the char-
acteristic frequencies

√
κ/M and

√
η/M (where κ is the

elastic force constant and η is the damping coefficient).
The predicted mass value denotes that the resonance fre-
quency must be three times less than that estimated using
the core mass [3]. It should be noticed, however, that ver-
ification of the vortex mass value with the indicated accu-
racy requires also the precise determination of the elastic
and viscous constants.
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